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Abstract

This paper examines the curious mismatch between the supposition of gradual, continuous
change embedded in common health trajectory models and a pattern of punctuated stability that
is captured in the nationally-representative and widely-used Health and Retirement Study. Inspired
by an insight from evolutionary biology, our analysis contrasts the conclusions drawn from mixed
regression methods (growth curve models and latent class growth analysis) designed to capture
trajectories in repeated-measure data with methods (multistate life tables and sequence analysis)
designed to describe discrete states and transition patterns. Although a gradually increasing num-
ber of functional limitations is consistent with prevailing notions of health decline, our findings
suggest that later life functional health, as captured in survey data, is more aptly characterized as
a punctuated equilibrium: long-term stability that is irregularly interrupted by changes in health
status or mortality. We conclude by discussing the implications of a punctuated equilibrium model
for studies of health and aging.
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Introduction

Stability and change are fundamental concepts in studies of individual development across the

lifespan and population trajectories over time (Baltes and Nesselroade, 1979, George, 2009). While

some attributes remain constant as persons age, others – including health – may be profoundly

altered. In the popular and scholarly imaginations, change attracts more attention than stability.

The desire to study change has inspired the ongoing collection of longitudinal data and the devel-

opment of statistical methodologies that use repeated-measure observations to determine what is

constant and what changes, to describe how change unfolds, and to explain why change takes place.

Changes in health, as in other characteristics, may occur suddenly or unfold steadily as persons

age. We show that an intuitively appealing, biologically compelling, and analytically tractable

assumption of gradualism is built into several influential statistical models used to describe lon-

gitudinal health trajectories. Inspired by a classical insight from evolutionary biology, however,

we ask whether the discrete survey data on which such analyses rely are in fact consistent with a

gradualist model or whether they may be more aptly characterized via a punctuated equilibrium

model: a pattern of long-term stability that is irregularly interrupted by changes in health status.

Gradualism vs. Punctuated Equilibrium: In Search of a Guiding Metaphor

In a seminal 1972 paper, paleontologists Niles Eldredge and Stephen Jay Gould proposed a new

framework for understanding the historical development of new species. The prevailing model held

that speciation unfolded gradually, as a “slow and steady transformation of entire populations”

(84). Eldredge and Gould (1972) argued instead that a model of punctuated equilibrium – long-

term stasis occasionally disrupted by “rapid and episodic events” – is a more accurate description

of evolutionary change as documented in the fossil record. This approach highlighted the predomi-

nance of long spans of time without variation in key features rather than the progressive unfolding

of change. Change does take place “rather often in the fullness of time” – but it tends to be a rare

deviation from a previously stable trend, rather than a continuous incremental process.

Eldredge and Gould’s argument was based not on new data, but rather on the reconsideration

of existing evidence. The gradualist model had regarded discontinuities in the fossil record as

missing data in an otherwise smooth trajectory. In contrast, the punctuated equilibrium perspective
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interpreted breaks in the fossil record as real disruptions to the status quo – reflecting a messy,

non-deterministic historical process that interweaves stability and disruption. Using the contrast

between gradualism and punctuated equilibrium as a guiding metaphor, we highlight the mismatch

between the supposition of gradual, continuous change embedded in health trajectory models and

the pattern of punctuated stability that is captured in population-based health survey data.

Gradualism is an intuitively appealing framework for health analysts because many physiological

changes probably do occur in a continuous incremental fashion sub-clinically (Ben-Shlomo and

Kuh, 2002). Gradualism also has appealing statistical properties, because it can be modeled using

standard functional forms that trace smooth patterns of change. Scientific hypotheses consistent

with gradualist assumptions generate clear expectations about the nature of health change in aging

populations, and these hypotheses can be tested against the available data and used in predictive

models. For all of these reasons, the most prominent analytic approaches in longitudinal health

research aim to capture underlying trajectories of continuous health changes.

However, the major studies following aging cohorts collect data in discrete increments. The

Health and Retirement Study, for example, interviews respondents over 2-year intervals. More

frequent assessments would likely capture more detailed health changes, though research suggests

that rather than simply filling in a pattern of gradual health decline finer-grained data (both in

terms of time intervals and specificity of health measurements) would or uncover brief spells of

debilitation and recovery that are less consistent with assumptions of smooth incremental changes

(Wolf and Gill, 2009).

The punctuated equilibrium framework provides a more literal reading of the fossil record than

gradualism, and it also presents a compelling metaphor for the lived health experiences of many

individuals, who may not consciously track their health until they experience a sudden change in

it – either due to an acute event or when a particular underlying health condition passes a clinical

threshold. Discrete survey data – like the paleontological fossil record in Eldredge and Gould’s

analysis – may thus be relatively well suited for capturing overall stability in health and recording

primarily those shifts in health that are significant enough to establish a new homeostasis.

It is important to note here that the punctuated equilibrium framework is not necessarily

in conflict with the gradualist one: it simply reads the available evidence on a different time

scale. While gradualism is concerned with the incremental, continuous changes that ultimately
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differentiate species or health statuses, punctuated equilibrium describes discrete changes on a

time scale that matches the data collection schedule. Thus, the fundamental mechanism of change

could indeed be gradual (as assumed in statistical models used to analyze longitudinal data), but

only those changes that cross the threshold of observation at survey time are recorded in the data.

This perspective raises questions about the widespread notion that longitudinal data and models

allow researchers to accurately depict health in later life as a process of gradual decline. This notion

may be problematic not because health does not change gradually – indeed, it very likely does do

so in many cases – but rather because clinical records and survey measures capture static snapshots

that may not form smooth trajectories, creating a potential mismatch between the data and the

methods used to analyze them.

Modeling Longitudinal Change

Researchers across the social, behavioral, and health sciences use longitudinal (time-series) data to

identify both intraindividual and interindividual changes: that is, they examine the timing, direc-

tion, and magnitude of within-person changes as well as the ways in which patterns of individual

change vary across persons in a population (Nesselroade, 1991, George, 2009). Longitudinal data

allow the construction of trajectories that reflect the sequencing of distinct events of interest, or,

more commonly, identify patterns of stability and change in repeated measures. A variety of meth-

ods are available for analyzing temporally ordered elements, and they vary in the extent to which

they consider trajectories as discrete step-wise processes or, alternatively, continuous whole units

(Abbott, 1995).

One early approach to the analysis of change over age was the use of multistate (or increment-

decrement) life tables (Namboodiri and Suchindran, 1987). The multistate life table models change

as a Markov-process, a method that allows the calculation of transition probabilities across a finite

number of predefined discrete states. The method allows exit and re-entry into the same state and

accounts for the competing risk of mortality.1 Other early statistical approaches to longitudinal data

involved reducing repeated measures into summary indicators of change (also known as end-point

analysis). Each of these methods approaches longitudinal changes as differences between discrete

1Event-history methods, also known as duration (time-to-event) methods, hazard methods, and failure or survival
analysis, expanded on the life table approach to model the timing of particular transitions between states, often by
building in smooth gradualist assumptions about the shape of the underlying hazard function.
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states, and has been widely employed in a variety of social science and public health applications.

Over the past three decades, mixed effects regression models have become the most prominent

statistical approach to longitudinal data. These methods allow researchers to reduce their reliance

on constructed discrete categories and instead model trajectories via continuous distribution func-

tions that characterize patterns of change across ages (see Lynch and Taylor (2016) for a review).

One major framework that guides contemporary longitudinal analyses is based on the assumption

that individuals come from a single population, and that therefore, a single parametric trajectory

can adequately summarize their pattern of change over time. Known as growth curves within the

multilevel or hierarchical linear models literature (Raudenbush and Bryk, 2002) or latent growth

curves in the structural equation models literature (Bollen and Curran, 2006), these models esti-

mate an average trajectory along with parameters that capture individual heterogeneity. While

the specific parameters defining the average trajectory may vary, growth curves by definition as-

sume that changes occur at a constant or constantly increasing rate, and their parameter estimates

specify the pace of gradual change.

Another prominent framework challenges the assumption that populations can be well charac-

terized using a single average trajectory with random effects, and instead suggests that populations

comprise meaningful classes of individuals who follow distinct trajectories (Jung and Wickrama,

2008). Latent class growth analysis (LCGA) assume multiple classes, each internally homogeneous

(Nagin, 2005). The more computationally intensive approach of growth mixture models (GMM)

relaxes the assumption of within-class homogeneity and models heterogeneity within distinct la-

tent classes of trajectories (Muthén and Asparouhov, 2008). Both of these group-based latent-class

approaches use mixtures of probability distributions and a multinomial modeling strategy to iden-

tify unique clusters of trajectories that aim to more explicitly capture interindiviudal differences

in intraindividual trajectories, and have consequently proved increasingly popular with analysts

working within the life course perspective.

The parametric assumptions built into class-based models produce relatively smooth and grad-

ually unfolding trajectories, even when applied to health data that is observed at discrete time

periods. Despite concerns about the accuracy of classification results and uncertainty about model

fit (Warren et al., 2015), latent class models and their growth curve counterpart remain appeal-

ing to researchers because of their capacity to portray a coherent pattern of longitudinal change.
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When estimated via a full-information maximum likelihood approach, these models also have the

advantage of employing all available information, including on persons who provide incomplete

information due to intermittent missingness or early drop out. Notably, however, this method does

not fully address the potential bias that results from the compositional impacts of non-random and

likely health-related missing data (Jackson et al., 2017).

Sequence analysis is a separate methodological tradition that originated in studies of protein

and DNA strings and was imported into the social science (Abbott and Tsay, 2000, Billari, 2001).

This method approaches ordered series of discrete events or states as whole analytic units, and can

characterize linear progression as well as more complex patterns that allow for contingency, chance

occurrences, and interdependence among states (Abbott, 1995). Contemporary sequence analyses

generate typologies – clusters of cases with similar trajectories – as well as measures summarizing

the diversity and complexity of observed patterns (Gabadinho et al., 2011, Barban and Billari,

2012). They are thus flexible enough to accommodate both gradual trajectories and punctuated

patterns of change.

Below, we compare and contrast the conclusions drawn from growth curve models, latent class

growth analysis, multistate life tables, and sequence analysis applied to repeated measures of func-

tional health in a nationally representative longitudinal survey. In considering whether the data are

consistent with a model of gradual change or a less predictable punctuated equilibrium pattern, we

document how observed patterns of intra-individual change become aggregated into different pop-

ulation trajectories depending on the analytic method. We examine the extent to which different

methods acknowledge and represent inter-individual heterogeneity in intra-individual change and

explore each method’s implications for inferences about patterns of health in later life.

Changes in Health Across the Life Course

Health is a complex multifaceted construct that encompasses subclinical and manifest components.

In the absence of a single comprehensive measure, health surveys collect information about chronic

diseases, adverse events, functional limitations, disability, and self-rated health at multiple time

points, and longitudinal models allow researchers to describe the onset, timing, severity, and rate

of changes in these variables (George, 2009, Wolf, 2016). Intuitively, we talk about patterns of

health decline in later life, while empirically we measure changes in health as the accumulation of
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negative outcomes.

The life course perspective encourages researchers to consider health in relation to accumu-

lated exposures to advantage and disadvantage that differentiate individuals or groups over time

(Dannefer, 2003, Ferraro and Shippee, 2009). More specifically, dynamic interactions between struc-

tures and processes of social stratification, individual social position, personal traits, and contingent

events are theorized to generate inequality in social and economic measures and in health.

Empirical research has tested this broad life course hypothesis by exploring early social and

economic disadvantage in relation to specific adult health outcomes (Hayward and Gorman, 2004,

Ferraro et al., 2016). A growing number of studies have employed growth curve models to describe

trajectories of health in later life (Haas, 2008, Shuey and Willson, 2008, Quiñones et al., 2011,

Warner and Brown, 2011, Brown et al., 2012) and many have adopted latent class growth analysis

or growth mixture models to describe heterogeneity across individuals in the direction and pace of

health changes in later life (Liang et al., 2010b, Taylor and Lynch, 2011, Gill et al., 2010, Wickrama

et al., 2012, Han et al., 2013). These trajectory studies have described patterns in self-rated and

functional health, as well as the in the accumulation of limitations in activities of daily living and

markers of frailty. They have also highlighted differences across groups and tested hypotheses about

the extent to which exposure to disadvantage – e.g. economic hardship and discrimination based

on race/ethnicity or gender – sorts individuals into differential health decline patterns.

Although cumulative (dis)advantage and inequality theories recognizes that risks may increase

both gradually as well as sporadically or non-linearly, most empirical analyses nonetheless treat

health change as gradual and steady. Thus, although estimated trajectories vary in baseline profiles

and in whether the pattern of change is depicted as linear, geometric, or exponential (DiPrete and

Eirich, 2006), all results reflect the assumption of gradual continuous change.

A separate line of research has employed multistate life tables to estimate the expected duration

in states of health, illness, and disability (Crimmins et al., 1994, 2009, Hayward et al., 2014). These

studies found that increased longevity comprises years lived in good health and in disability, and

that the distribution of years in different health states varies by socioeconomic status. Multistate

models capture stability in health over time and incorporate mortality as a competing risk to varied

levels of limitation. Although discrete multistate models provide an incomplete approximation of

the continuous process thought to underlie health changes, they nonetheless offer a compelling
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counterpoint to the gradualist regression models – one that is consistent with the nature of survey

data and compatible with a punctuated equilibrium model.

Finally, although sequence analysis is frequently used in life course research exploring patterns

of marriage and fertility, education and employment, and criminal or deviant behavior (Billari,

2001), it is less commonly applied to health patterns. While an early example identified typologies

of health that differ in the timing, order, and direction of change (Clipp et al., 1992), more recent

sequence analyses in the health sciences have focused on genetic markers. Nonetheless, sequence

analysis offers a promising way to disentangle patterns of intraindividual changes from the model

assumptions and compositional changes that shape aggregate trajectories.

Here, we compare patterns of functional limitation in later life produced by gradualist and

discrete analytic techniques and consider their implications for conclusions about population health

patterns. We show that models that assume continuous incremental change may be at odds with

data that record general stability irregularly punctuated by relatively sudden change.

Data and Methods

Data

We illustrate the contrast between the gradualist and punctuated equilibrium perspectives using

data from the Health and Retirement Study (HRS), a nationally-representative longitudinal survey

of community-dwelling middle-aged and older Americans (Juster and Suzman, 1995) that is a

leading source of information about health and well-being in later life. The HRS is particularly

well suited for our purpose because of its longitudinal nature and because researchers across the

social and public health sciences have relied on it extensively to describe patterns of health in

later life. We use 11 waves of data covering the period 1994-2014. Our analytic sample includes

members of the main HRS cohort born between 1931-1941, whose follow-up period encompasses

the ages when health problems typically manifest and escalate.2

Our analysis is based on 10,198 members of the HRS cohort. Of respondents in the initial

sample, 3,505 (34%) died during the follow-up period, and 1,781 (17%) left the survey prior to the

2The original sample was recruited in 1992 and our descriptive analysis considers all 12 rounds of data (1992-2014)
as information on chronic conditions is available for 1992
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final wave. The full 10,198 cohort members contribute at least some information to the descriptive

analysis and sequence analysis. This data allows us to fully quantify the impact of attrition,

mortality, and temporary missingness. The sample size for each analysis described below varies

somewhat depending on how each methods handles temporary missingness and attrition. The

9,706 individuals who have at least one measure of functional limitations are included in the latent

growth curve, latent class growth analysis, and multi-state models. In models that analyze change,

we restrict the analytic sample to 9,141 persons who had health outcomes observed during at least

two survey rounds.3

Key Variables

Our outcome is the sum (0-12) of functional limitations at survey rounds 2-12. Functional limi-

tations are measured via three sub-scales of mobility (walking several blocks, walking one block,

walking across the room, climbing several flights of stairs and climbing one flight of stairs), large

muscle functioning (sitting for two hours, getting up from a chair, stooping or kneeling or crouch-

ing, and pushing or pulling a large object), and fine motor skills (picking up a dime, eating, and

dressing). For all items, 0=no difficulty; 1=difficulty, and higher sums indicate more limitation.

Of the health measures available in the Health and Retirement Study, the sum of functional

limitations is arguably the best suited to capture gradual change in health over time as it contains

a large number of items that measure a mix of mild and severe limitations which individuals can

develop or recover from over time. Functional limitations are conceptually situated between chronic

conditions and ADL limitations (Verbrugge and Jette, 1994), and prior studies using the HRS data

have found that functional limitations gradually accumulate across survey rounds, both for the

study cohort as a whole and for specific sub-populations (Haas, 2008, Liang et al., 2010b,a, Brown

et al., 2012). Functional limitation are more likely than other commonly-used measures of health,

including the number of chronic conditions or the number of limitations in activities of daily living

(ADLs) to fit the gradualist paradigm. Chronic conditions, while common, accumulate more slowly

than functional limitations, and often require formal diagnosis by a physician with little prospect

for recovery. Limitations in ADLs, on the other hand, are relatively rare and encompass only a few

3In supplementary analyses (available upon request), we examine how different excluded members of the HRS
cohort are from those retained in the change analysis.

8



(5) indicators of severe disability, leaving little opportunity to capture substantial progression or

recovery.

Our analyses focus on patterns of functional health and do not adjust for covariates in order to

compare inferences across longitudinal techniques.

Methods

We began by fitting an unconditional growth curve model for repeated measures of functional

limitations. The model includes a fixed effect representing a mean trajectory across all individuals

in the sample, and a random effect representing the variance of individual trajectories around the

group mean. We tested linear and quadratic specifications and the best fitting model was chosen

using a combination of CFI, TLI, and RMSEA fit statistics (Raudenbush and Bryk, 2002).

Next, we modeled trajectories of functional limitations with latent class growth analysis

(LCGA), an approach that identifies qualitatively distinct trajectories of functional limitation

onset and accumulation within a population and classifies individuals into the best-fitting category

(Nagin, 2005). Following suggested practice (Jung and Wickrama, 2008), we determined the best

fitting model based on the smallest sample-adjusted BIC value combined with a significant Lo,

Mendell, and Rubin likelihood ratio test.

To evaluate the gradualistic assumptions built into the above models, we conducted a descrip-

tive analysis to estimate: i) the percent of the sample that experiences increasing limitations; ii)

the percent of the sample with a constant (or consistently missing) number of functional limita-

tions; and iii) the percent of the sample that experiences decreasing limitations. These quantities

were estimated comparing the first and last observed rounds as well as over the total duration of

the study.

We then estimated a multi-state model (Namboodiri and Suchindran, 1987) that calculates

the probability of transitions across five states: i) 0-1 limitations; ii) 2-5 limitations; iii) 6-12

limitations, iv) temporarily missing (i.e. missing data but not attrition); and v) lost to follow

up (including respondents who died and who dropped out of the study). The Markov-process

model allows recovery and the only absorbing state is loss to follow up (seeFigure 1). Model fit is

evaluated using the likelihood ratio test, AIC, and difference between observed and model predicted

values. The best fitting model assumes the probability of transitioning across states is constant
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between survey rounds 2-6, 6-9, and 9-12. Sensitivity analyses varied the functional limitation

cutpoints used to classify individuals into particular health states, and our results appear robust

to varying the specification of the states.

Finally, we conducted a sequence analysis (Gabadinho et al., 2011) to identify, describe, and

visualize the most commonly observed patterns of functional limitation. Since the first analyses

showed the high prevalence of static trajectories (i.e. ones where no change is experienced prior

to drop out), we conducted a second sequence analysis restricted to those who experienced any

increase in functional limitations.

Across analyses, no imputation was performed. Missing data is handled in the latent growth

curve and latent class growth analysis using full information maximum likelihood (FIML). FIML

keeps cases in the sample until the time of attrition allowing them to contribute all available

information to estimated trajectories. However, FIML is designed for situations where data is

missing at random, while for this sample we strongly suspect that attrition and dropout are related

to health selection and decidedly missing not at random (Jackson et al. 2017).

In the multi-state models, temporary missingness is treated as a discrete state and individuals

may transition between having any number of functional limitations to the missing state and later

return to the sample. This estimation treats missingness as informative and allows us to empirically

quantify the likelihood that individuals in various health states will leave and return to the sample.

Subject dropout and mortality are treated as an absorbing state.

Finally, in the sequence analysis, all members of the sample are included in an initial analysis

that quantifies the frequency of all health patterns. This analysis distinguishes between three types

of missingness: temporary missingness, attrition, and mortality, explicitly showing the contribution

of different types of missing data to the cohort’s health experiences.

Analyses were conducted using the statistical packages Stata, R, and Mplus 7.11 (Muthén and

Muthén, 2013). A more detailed description of each method’s implementation is available in the

Appendix.
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Results

Consistent with prior analyses in the HRS, our unconditional growth curve model (Figure 2) gen-

erates a curvilinear trajectory in which functional limitations accumulate gradually over the course

of the study. While the full model results in Table 1 suggest substantial heterogeneity around

the average population trajectory parameters, the main conclusion affirms common assumptions

about the pattern of increasing limitations in later life.4 However, as subsequent analyses suggest,

this gradual accumulation is partially driven by the model’s parameters and the relatively small

proportion of individuals who experience a change in health at any particular time in the study.

The trajectory classes identified by the LCGA model divides the HRS cohort into four subgroups

with qualitatively distinct health trajectories (Figure 3). Class A (approximately 65% of the

sample) is characterized by few limitations at the beginning of the study, and a slow, gradual

accumulation of limitations across survey rounds. Class B displays a relatively fast pace of limitation

accumulation. Individuals in Class C begin the study with a higher number of limitations (4),

and slowly accumulate limitations thereafter. Those in Class D begin with a high number of

limitations (8), and remain relatively constant at that level with some slight evidence of a health

recovery at later rounds. Prior research casts some doubts about the accuracy of class identification

(Warren et al., 2015, Jackson et al., 2017), partially because heterogeneity within classes and

compositional change due to selective mortality and attrition may bias the parameters shaping

each groups trajectory. Still, the relative flatness of most class trajectories (with the striking

exception of Class B) in Figure 3 relative to the mean trajectory estimated in Figure 2 suggests

that many respondents experience stability in functional health over time, and that the steeper

accumulation in the LGC is at least partially an artifact of population composition. That said,

with the exception of Class D, which depicts a slight recovery, the trajectories depicted in Figure

3 are also characterized by a pattern of steady accumulation over time.5

Subsequent analyses further indicate that a trajectory of gradually increasing limitations is

far from universal. Table 1 summarizes results from a simple descriptive analysis. Panel 1 in the

table confirms the overall health declines for this sample: the average number of chronic conditions,

4Criteria for selecting best fitting model are shown in Appendix Table A1.
5Criteria for selecting best fitting model are shown in Appendix Table A2.
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functional limitations, and ADL limitations is higher at the last survey round than at the first.6

Panel 2 describes the proportion of the sample whose health changes between the first and last

survey rounds observed. While 59% of the sample reports more functional limitations at the last

survey round than they did at the first round, nearly 25% experiences no change in functional

limitations and 16% experience a decrease in limitations between the first and last round observed.

A similar analysis of change in chronic conditions and activities of daily living reinforces the idea

that the pattern of later-life health is more heterogeneous than a single trajectory of decline: 20%

of the sample reports no change in the number of chronic conditions between the first and last

rounds observed, and a striking 73% report no change in ADL limitations between the first and

last round observed.

However, changes in sample health are somewhat more common than the prior analysis suggests.

As panel 3 in Table 1 shows, although only 59% of the sample saw increased functional limitations

between their first and last observations, 79% experienced an increase at some point during the

survey. Similarly, while 24% of the sample had more limitations in ADLs at the last round of the

survey than at the first, 37% had an increase in ADL limitations over the observation period. These

findings suggest a non-trivial proportion of the sample recovers after experiencing a health decline.

The pattern of within-individual change in health suggests that a gradual increase in limitations

is not very common. As summarized in panel 4, on average across survey rounds, an individual ex-

periences no change in chronic conditions, functional limitations, or ADL limitations in ADLs more

commonly than an increase or decrease. An individual is expected to experience 2.47 increases in

functional limitations, 2.75 occasions when their number of functional limitations does not change,

and 1.94 decreases in functional limitations. Together, these findings suggest that although the

mean number of functional limitations (as well as ADL limitations and chronic conditions) in-

creases between the first and last rounds of observation, this population-level change reflects the

experiences of only a small subset of the sample.7 Declining health is not a universal experience

nor does it appear to work in the progressive fashion often assumed by gradualist models. Perhaps

6We define last survey round as the last round a person is observed and the first survey round as the first
round observed. People with only one survey round observed are excluded from this analysis, which reduces the
representativeness of the sample and deflates the proportion with constant health over time.

7 supplemental analysis (Appendix Table A3) calculates the number of individuals who, starting from baseline
(round 2), experience successive increases in functional limitations. No individual experienced an increase in functional
limitations at each follow-up survey round and less than 1% of the sample experienced more than three successive
increases in functional limitations.
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most importantly, people, on average, spend more time not changing than they do changing.

Results from the best-fitting8 multistate model (see Table 3) confirm that with the exception

of transitions to and from a missing state, the most common pattern across survey rounds is stasis,

remaining in the same health status. For example, individuals who had 0-1 functional limitations

at survey Round 2 are estimated to have a 74% chance of remaining in that state at the next

round. Notably, the model also suggests a non-trivial risk of recovery. At round 9, people with

6-12 functional limitations had a 17% chance of transitioning to having between 2-5 limitations

at survey round 10. Consistent with our descriptive analysis, results from the multistate model

suggest that a linear accumulation of functional limitations is in fact quite rare. Even at the final

survey rounds, the probability of progressively moving from health class 1 (0 to 1 limitations) to

health class 2 (2 to 5 Limitations) to health class 3 (6 to 12 limitations) is only 3.74%.

Finally, our sequence analysis identified the most common functional limitation patterns for

individual members of the HRS cohort. The line width in each panel of figures 3 and 4 is

weighted by the number of cases who follow the particular trajectory. Sequences are shown on

separate panels because they are otherwise indistinguishable from each other, as most involve

shifts between the state of no limitations and missing values (mortality, attrition, or temporary

missingness). Notably, no single pattern characterizes more than 2% of the sample, and none of the

12 most common trajectories in figures 3 involve a gradual accumulation of functional limitation.

Instead, they highlight stability over time, and the role of selective mortality or attrition. While

increases in functional limitations do occur, they are relatively rare and occur at varying times.

When the analysis is restricted to individuals who experience any increase in functional limita-

tions over time (n=7,235), the results in figure 4 further reinforce the conclusion that functional

health over time is better described as a punctuated equilibrium than a gradual accumulation of

limitations. The 12 most common sequences show that an increase in limitations happens relatively

rarely across survey rounds, occurs at varying times, and most often consists of the addition of one

limitation between a given set of rounds, rather than a gradual, continuous accumulation.

Although examples of continuous accumulation do exist, they are less common than gradualist

models lead us to expect. Instead, the trajectories produced by mixed regression methods are driven

by parametric assumptions and compositional changes in the sample. The average population

8Criteria for selecting best fitting model are shown in Appendix Table A4.
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(or subpopulation) trajectory does not accurately represent the longitudinal experience of most

individuals.

Discussion

In longitudinal studies of health, researchers choose how to aggregate individual records of change

and stability into summaries of population level. The chosen model reflects a theory about health

and aging as well as a perspective on heterogeneity in the population being analyzed. It also

influences the inferences that can be drawn from the data. We have argued that there is a disconnect

between recorded individual health histories and the trajectory models that aim to characterize

longitudinal health changes in populations. Expectations about smooth patterns of gradual change

– while intuitively and analytically appealing – may simply not fit the survey data record.

Later-Life Health: Modeled and Observed Patterns

By design, mixed regression parametric models characterize the longitudinal pattern of health

among older adults via continuous linear or quadratic trajectories. Results from our latent growth

curve and latent class growth analysis are consistent with this literature, showing a slow, gradual

accumulation of functional limitations for members of the HRS cohort overall, and within subgroups

distinguished by their initial level of limitations and the pace of subsequent accumulation.

Researchers have cautioned against equating the predicted smooth trajectories with the complex

dynamics that trajectories imperfectly measure, or reifying latent trajectory classes without ac-

knowledging within-group heterogeneity and the competing risks of mortality and drop out (Lynch

and Taylor, 2016, Warren et al., 2015, Wolf, 2016, Zimmer et al., 2012). Still, these models have re-

mained popular because their assumptions are biologically plausible and intuitively appealing, and

their statistical properties facilitate the testing of hypotheses as well as the prediction of population

health patterns.

However, descriptive, multistate, and sequence analyses all cast doubt on the gradualist assump-

tions embedded in trajectory models. Our descriptive analysis shows that a pattern of increasing

limitations is far from universal in this sample of older adults, and stasis rather than change is the

most common occurrence. The multistate and sequence analyses reinforce these conclusions: both
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suggest that even though change is common in the sample overall, for individuals it occurs only

rarely, at irregular times and intervals, and in a non-linear fashion.

While the more discrete analyses do not impose the same parametric assumptions as the mixed

regression models, they too have drawbacks. Computational and data constraints require that in-

dividuals with different numbers of functional limitations be pooled into relatively few groups for

the multistate analysis. While our results are robust to alternative specification of states, it is pos-

sible that an individual experienced a health change between survey rounds without transitioning

between model states. The multistate model also flattens the temporal dimension of change, focus-

ing on the occurrence of transitions rather than their timing. Although this aspect of the model

involves the loss of some detail, it allows analysts to avoid assuming a consistent pattern of gradual

change across individuals and time. In contrast, the sequence analysis preserves the full richness of

the data but at the expense of parsimony. With over 8000 distinct sequences, it is difficult to distill

findings into generalizable conclusions about population health. Still, this difficulty in reducing the

data is itself informative.

Our results highlight stasis as a major characteristic of longitudinal health patterns, with most

people experiencing no observed changes most of the time, even though in the sample as a whole,

change occurs frequently. The analysis also highlights the diverse nature of change, with increases

and declines happening at different times and intervals, yielding no single typical trajectory or

clear set of naturally-clustering sequence patterns. Notably, functional limitation are more likely

than other commonly-used measures of health – including the number of chronic conditions or the

number of ADL limitations – to fit the gradualist assumption, and yet they do not. Our findings

suggest that conventional survey follow-up is not well suited for capturing gradual changes in health

that may be occurring.

The impact of temporary missingness, attrition, and mortality on inferences should be noted.

A majority of the sample is lost to attrition or mortality, raising questions about the potentially-

biasing impact of nonrandom compositional changes on the estimated population trajectories. This

problem is particularly acute in the case of the LCGA, because it produces considerable uncertainty

in the assignment of individuals into latent class (Jackson et al., 2017). The high prevalence

of missing data also complicates the interpretation of our descriptive, multistate, and sequence

analyses. Across analyses, we do not impute but instead allow the missingness to be potentially

15



informative. It is, however possible that some temporary missingness is random or due to illness

followed by complete recovery. Individuals who drop out may experience a greater accumulation

of functional limitations than those observed throughout the study, suggesting that analyses may

underestimate the prevalence and severity of functional limitations.

Coarse measures of health, regular two year intervals between periods of observed data, and

irregular interruptions in the form of missing and censored data may all contribute to our finding

that rather than the smooth change suggested by the gradualist assumptions, the standard survey

data could be more aptly characterized as a punctuated equilibrium: long-term stability that is

irregularly interrupted by singular, often small changes in health status or – frequently – mortality

or attrition from the study.

Implications for Health and Aging Research

The punctuated equilibrium perspective presents challenges for those interested in examining health

inequality across the life course. Empirical analyses aiming to link early and mid-life factors with

the pace of later-life health declines have thus far relied on gradualist models, whose built-in

assumptions facilitate the testing of cumulative disadvantage hypotheses. However, the notion of a

constant or compounding health disadvantage for socially disadvantaged groups may appear to be

refuted by our findings. While advantage and disadvantage may accumulate over the life course,

there is no simple pattern of accumulation in functional limitations. If the gradual trajectory is

not an accurate model for later life health patterns, using it to compare the longitudinal health

patterns of subpopulations or test the association of such patterns with prior exposures becomes

problematic, too.

For the HRS cohort and subpopulations defined by demographic and social characteristics,

health does not appear to change in a gradual form (supplementary analyses available upon request).

Several trajectory studies have indeed found that a variety of demographic and social characteristics

are associated with baseline differences in health, but not with parameters describing the slope of

change over time (e.g. Gueorguieva et al. (2009), Quiñones et al. (2011), Brown et al. (2012)).

Such findings may be reflective of the problematic assumptions of gradualist models rather than a

refutation of links between early exposures and later life health.

The earlier death of socially and economically disadvantaged persons (who might be expected
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to display some a cumulative health penalty) and the non-random nature of attrition in longi-

tudinal surveys of health suggests that quantitative characterizations of health trajectories may

underestimate the accumulation of poor health outcomes in disadvantaged populations (Jackson

et al., 2017), contributing to an inaccurate impression of stable or narrowing gaps in health across

groups.

To better understand health and inequalities in later life, researchers should pursue both better

data and better methods. Larger data samples, more thorough follow-up for specific subgroups

believed to have health disadvantages, and more nuanced measures of health and functioning are

needed. The development of methods that can depict non-linearity in the progression of individual

health while accounting for changes in population composition over time is another promising

avenue for future research.

The notion that aging typically involves a gradual decline in health does not fit with currently

available longitudinal survey data. Our analyses suggest that later-life health is better described

as a punctuated equilibrium: general stability interrupted by sporadic change. Although human

health unfolds on a different time scale than the speciation process studied by Eldredge and Gould

(1972) and the translation of metaphors across disciplines may be fraught, a recasting of our analytic

approach to health and aging is now warranted, as is the pursuit of new data and methods to test it.

Although the punctuated equilibrium perspective reduces our ability to rely on gradualist models

to depict and predict individual and population health patterns, the need to understand these

patterns remains as strong as ever.

17



Figures

Figure 1: Multi-State Model
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Figure 2: Latent Growth Curve with Quadratic Slope (n=9706)
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Figure 3: LCGA: Four Class Model with Quadratic Slope (n=9706)
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Figure 4: Sequence Analysis: Most Common Trajectories (n=10,198)
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Figure 5: Sequence Analysis: Most Common Trajectories with Any Increase (n=7,235)
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Tables

Parameter

Linear Slope With Intercept -0.14***
Quadratic Slope With Linear Slope -0.02***
Quadaratic Slope With Intercept 0.005*
Mean
Intercept 1.89***
Linear Slope 0.11***
Quadaratic Term 0.01***
Variance
Intercept 4.86***
Linear Slope 0.26***
Quadratic Slope 0.00***

* P<.05 **P<.01 ***P<.001

Table 1: Parameters from Best Fitting Latent Growth Curve with Quadratic Slope (n=9706)
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Appendix A: Tables

Table A1: Fit Statistics for Latent Growth Curve Models

Model AIC SABIC RMSEA CFI TLI

Linear Latent Growth Curve 311461.707 311525.749 0.073 0.950 0.955

Quadratic Latent Growth Curve 309720.802 309800.855 0.051 0.977 0.978

Table A2: Fit Statistics for LCGA Analysis

Sample Adjusted BIC

2 class linear 308003.334

2 class quadratic 306178.625

3 class linear 306664.58

3 class quadratic 304585.4

4 class linear 305882.043

4 class quadratic 303683.76

5 class linear 305273.165

5 class quadratic –

6 class linear –

6 class quadratic –
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Table A3: Prevalence of Gradually Increasing Functional Limitations

Successive Increase Through Starting Sample Observed at Round 2

N=8,825

Round 3 2,487

Round 4 504

Round 5 77

Round 6 12

Round 7 5

Round 8 1

Round 9 0

Table A4: AIC for Multi-State Models

Model AIC

Transition Probabilities Constrained to be Constant Across Rounds 159407.1

Transition Probabilities Constrained to be Constant Between Rounds 2 to 5, 6 to 12 158736.4

Transition Probabilities Constrained to be Constant Between Rounds 2 to 5, 6 to 8, 9 to 12 158209.4

26



References

A. Abbott. Sequence analysis: new methods for old ideas. Annual review of sociology, 21(1):93–113, 1995.

A. Abbott and A. Tsay. Sequence analysis and optimal matching methods in sociology review and prospect. Socio-

logical methods & research, 29(1):3–33, 2000.

P. B. Baltes and J. R. Nesselroade. Longitudinal research in the study of behavior and development. Academic Press,

1979.

N. Barban and F. C. Billari. Classifying life course trajectories: a comparison of latent class and sequence analysis.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(5):765–784, 2012.

Y. Ben-Shlomo and D. Kuh. A life course approach to chronic disease epidemiology: conceptual models, empirical

challenges and interdisciplinary perspectives, 2002.

F. C. Billari. Sequence analysis in demographic research. Canadian Studies in Population, 28(2):439–458, 2001.

K. A. Bollen and P. J. Curran. Latent curve models: A structural equation perspective, volume 467. John Wiley &

Sons, 2006.

T. H. Brown, A. M. O’Rand, and D. E. Adkins. Race-ethnicity and health trajectories tests of three hypotheses

across multiple groups and health outcomes. Journal of health and social behavior, 53(3):359–377, 2012.

E. Clipp, E. Pavalko, and G. Elder Jr. Trajectories of health: In concept and empirical pattern. Behavior, Health,

and Aging, 2:159–179, 1992.

E. M. Crimmins, M. D. Hayward, and Y. Saito. Changing mortality and morbidity rates and the health status and

life expectancy of the older population. Demography, 31(1):159–175, 1994.

E. M. Crimmins, M. D. Hayward, A. Hagedorn, Y. Saito, and N. Brouard. Change in disability-free life expectancy

for americans 70 years old and older. Demography, 46(3):627–646, 2009.

D. Dannefer. Cumulative advantage/disadvantage and the life course: Cross-fertilizing age and social science theory.

The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 58(6):S327–S337, 2003.

27



T. A. DiPrete and G. M. Eirich. Cumulative advantage as a mechanism for inequality: A review of theoretical and

empirical developments. Annu. Rev. Sociol., 32:271–297, 2006.

N. Eldredge and S. J. Gould. Punctuated equilibria: an alternative to phyletic gradualism. In T. Schopf, editor,

Models in Paleobiology, volume 4 of 5, chapter 8, pages 82–115. Freeman Cooper, San Francisco, 1972.

K. F. Ferraro and T. P. Shippee. Aging and cumulative inequality: How does inequality get under the skin? The

Gerontologist, 49(3):333–343, 2009.

K. F. Ferraro, M. H. Schafer, and L. R. Wilkinson. Childhood disadvantage and health problems in middle and later

life: Early imprints on physical health? American sociological review, 81(1):107–133, 2016.

A. Gabadinho, G. Ritschard, N. S. Mueller, and M. Studer. Analyzing and visualizing state sequences in r with

traminer. Journal of Statistical Software, 40(4):1–37, 2011.

L. K. George. Conceptualizing and measuring trajectories. The craft of life course research, pages 163–186, 2009.

T. M. Gill, E. A. Gahbauer, L. Han, and H. G. Allore. Trajectories of disability in the last year of life. New England

Journal of Medicine, 362(13):1173–1180, 2010.

R. Gueorguieva, J. L. Sindelar, T. A. Falba, J. M. Fletcher, P. Keenan, R. Wu, and W. T. Gallo. The impact of

occupation on self-rated health: cross-sectional and longitudinal evidence from the health and retirement survey.

The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 64(1):118–124, 2009.

S. Haas. Trajectories of functional health: The ‘long arm’ of childhood health and socioeconomic factors. Social

Science and Medicine, 66:849–861, 2008.

L. Han, H. Allore, T. Murphy, T. Gill, P. Peduzzi, and H. Lin. Dynamics of functional aging based on latent-class

trajectories of activities of daily living. Annals of epidemiology, 23(2):87–92, 2013.

M. D. Hayward and B. K. Gorman. The long arm of childhood: The influence of early-life social conditions on mens

mortality. Demography, 41(1):87–107, 2004.
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